Math 255A' Lecture 12 Notes

Daniel Raban

October 23, 2019

1 Reflexive Banach Spaces and Metrizability of the Unit Ball in the Weak* Topology

Today's lecture was given by a guest lecturer, Professor Dimitri Shlyakhtenko.

1.1 Reflexive spaces

Let X be a Banach space. For this lecture, we will denote the weak topology by $\sigma(X, X^*)$ and the weak*-topology by $\sigma(X^*, X)$. Lst time we proved the following theorem:

Theorem 1.1 (Alaoglu). $(X^*)_1$ is $\sigma(X^*, X)$ compact.

Definition 1.1. X is reflexive if $X = X^{**}$.

Example 1.1. For $1 , <math>L^p$ and ℓ^p are reflexive.

Proposition 1.1. $(X)_1 \subseteq (X^{**})_1$ is $\sigma(X^{**}, X^*)$ -dense.

Remark 1.1. $\sigma(X^{**}, X^*)|_X = \sigma(X, X^*).$

Proof. Take *B* to be the closure of $(X)_1$ in the $\sigma(X^{**}, X)$ topology. Then $B \subseteq (X^{**})_1$ as $(X^{**})_1$ is closed. If $x^{**} \in (X^{**})_1 \setminus B$, then by Hahn-Banach (on $(X^{**}, \sigma * X^{**}, X^{*}))$, there exist an $x^* \in X^*$ and $\alpha \in \mathbb{R}$ such that $\operatorname{Re} \langle x, x^* \rangle < \alpha < \alpha + \varepsilon < \operatorname{Re} \langle x^*, x_0^{**} \rangle$ for all $x \in (X)_1$. So there is an $x^* \in X^*$ such that $\operatorname{Re} \langle x, x^* \rangle < 1 < 1 + \varepsilon < \operatorname{Re} \langle x^*, x_0^{**} \rangle$ for all $x \in X_0$. Then $|\langle x, x^* \rangle| = 1$ if $||x|| \leq 1$, so $x^* \in (X^*)_1$. We now get

$$1 + \varepsilon < \operatorname{Re} \langle x^*, x_0^{**} \rangle \le |\langle x^* x_0^{**} \rangle| \le ||x_0^{**}|| \le 1.$$

This is a contradiction.

Theorem 1.2. Let X be a Banach space. The following are equivalent:

1. X is reflexive.

- 2. X^* is reflexive.
- 3. $\sigma(X^*, X) = \sigma(X^*, X^{**}).$
- 4. $(X)_1$ is compact in $\sigma(X, X^*)$.

Proof. (1) \implies (3): This is because $X = X^{**}$.

(1) \implies (4): If $X = X^{**}$, Then $(X)_1 = (X^{**})_1$. So $\sigma(X, X^*) = \sigma(X^{**}, X^*)$, the weak* topology on X^{**} . So $(X)_1$ is compact by Alaoglu's theorem.

(4) \implies (1): Note that $\sigma(X^{**}, X^*)|_X = \sigma(X, X^*)$. Thus, if $(X)_1$ is $\sigma(X, X^*)$ compact, then $(X)_1$ is compact in $\sigma(X^{**}, X^*)$ as a subset of X^{**} . By the proposition, $(X)_1$ is $\sigma(X^*, X^{**})$ -dense in X^{**} . And compact implies closed.

(3) \implies (2): By Alaoglu's theorem, $(X^*)_1$ is $\sigma(X^*, X)$ -compact. By assumption, $(X^*)_1$ is $\sigma(X^*, X^{**})$ -compact. Now apply the argument of (4) \implies (1) to X^* . So X^* is reflexive.

(2) \implies (1): Observe that $(X)_1$ is norm-closed in X^{**} (because this is an isometric inclusion). Therefore, $(X)_1$ is $\sigma(X^{**}, X^{***})$ -closed. Assuming (2), $(X)_1$ is $\sigma(X^{**}, X^*)$ -closed. Bt the proposition, $(X)_1$ is $\sigma(X^{**}, X^*)$ -dense in $(X^{**})_1$. So $(X)_1 = (X^{**})_1$. \Box

1.2 Additional properties of reflexive spaces

Corollary 1.1. Let X be a Banach space. If $Y \subseteq X$ is a closed subspace, then Y is reflexive.

Proof. We have $(Y)_1 = Y \cap (X)_1$. So if X is reflexive, then $(Y)_1$ is (X, X^*) -compact. But then $\sigma(X, X^*)|_Y = \sigma(Y, Y^*)$ (check this using Hahn-Banach). So Y is reflexive.

Example 1.2. Can you embed $\ell^{\infty} \subseteq \ell^2$ isometrically? No. Since ℓ^{∞} is not reflexive. What about embedding L^2 into L^{∞} ?

Corollary 1.2. Let X be a Banach space. If X is reflexive, X is weakly sequentially complete. That is, any $\sigma(X, X^*)$ -Cauchy sequence has a $\sigma(X, X^*)$ -limit.

Proof. Suppose $\{x_n\}_n$ is weakly Cauchy: for all $x \in X^*$, $\{\langle x_n, x^* \rangle\}$ is Cauchy. Then it is bounded. The principle of uniform boundedness implies that there exists some M such that $|\langle x_n, x^* \rangle| \leq M$ for any $x^* \in (X^*)_1$. So $||x_n|| \leq M$ for all n. Now by reflexivity, $M(X)_1$ is compact in $\sigma(X, X^*)$. So there exists a limit point $x \in M(X)_1$ such that $\langle x_n, x^* \rangle \to \langle x, x^* \rangle$ for all $x^* \in X^*$. Then $x_n \to x$ in the $\sigma(X, X^*)$ -topology. \Box

Example 1.3. Let X = C([0, 1]), and let

$$f_n = \begin{cases} -nx+1 & x \in [0, 1/n] \\ 0 & x \in (1/n, 1] \end{cases}$$

Then for any signed measure $\mu \in C([0,1])^*$, $\langle f_n, \mu \rangle = \int f_n(t) d\mu(t) \to \mu(\{0\})$, but $f_n \not\to f$ weakly. So be careful.

Definition 1.2. A subspace $Y \subseteq X$ is called **proximal** if for all $x_0 \in X$, there exists some $y_0 \in Y$ such that $||x_0 - y_0|| = \text{dist}(Y, x_0)$

Corollary 1.3. Let X be a Banach space. If X is reflexive, then any subspace $Y \subseteq X$ is proximal.

Proof. The map $x \mapsto ||x - x_0||$ is $\sigma(X, X^*)$ -semicontinous. Then $Y \cap \{x : ||x - x_0|| \le 2 \operatorname{dist}(x_0, Y)\}$ is a $\sigma(X, X^*)$ -compact set (by reflexivity). Semicontinuous functions achieve their minima.

Proposition 1.2. If $x^* \in X^*$, then ker x^* is proximal if and only if there is an $x \in (X)_1$ such that $\langle x, x^* \rangle = ||x^*||$.

Example 1.4. Let $L : [0,1] \to \mathbb{C}$ be $\int_0^{1/2} f \, dx - \int_{1/2}^1 f \, dx$. The norm of L is never achieved (you want a step function, but this is not continuous), so ker L is not proximal.

Theorem 1.3 (James, 60s). X is reflexive if and only if every closed hyperplane is proximal.

1.3 Metrizability of the closed unit ball in the weak* topology

Theorem 1.4. Let X be a Banach space. $(X^*)_1$ is $\sigma(X^*, X)$ -metrizable if and only if X is separable.

Proof. (\Leftarrow): Assume X is separable. Let $\{x_n\}_n$ be a countable dense subset of X. Let $\mathbb{D} = \{z : |z| \leq 1\}$, and let $Y = \prod_{\mathbb{N}} \mathbb{D}$. Then the map $\tau_1^* \to X$ by $\tau(x^*) = \{\langle x^*, x_n \rangle\}_n$ gives a homeomorphism from $((X^*)_1, \sigma(X^*, X)) \to Y$.

 (\implies) : If $(X^*)_1$ is $\sigma(X^*, X)$ -metrizable, then there are open sets $U_n \subseteq (X^*)_1$ with $0 \in U_n$ such that $\bigcap_n U_n = \{0\}$. By the definition of the weak* topology, there exist finites subsets F_n of X such that $\{x^* \in (X^*)_1 : |\langle x^*, x \rangle| < 1 \ \forall x \in F_n\} \subseteq U_n$. Let $F = \bigcup_n F_n$. We claim that F is dense. Then $\overline{F} = \bot (F^{\bot})$. So it is enough to prove that $F^{\bot} = \{0\}$.

We claim that F is dense. Then $F = (F^{\perp})$. So it is enough to prove that $F^{\perp} = \{0\}$. If $x \in F^{\perp} \setminus \{0\}$, then for all $x \in F_n$,

$$0 = \left| \left\langle \frac{x^*}{\|x^*\|}, x \right\rangle \right| < 1 \implies \frac{x^*}{\|x^*\|} \in U_n \implies \frac{x^*}{\|x^*\|} = 0.$$

So $F^{\perp} = \{0\}.$